
 

 

“P2P – Cloud-Based Tracker Assisted Peer-to-Peer Content Exchange 

Allocated Network” 

 

A 

Project Report 

submitted in partial fulfillment of the 

requirements for the award of the degree of 

 
BACHELOR OF TECHNOLOGY 

in 

COMPUTER SCIENCE 

Specialization in 

Cloud Computing and Virtualization Technology 

 

                                                                                     By : 
 

 

 Name: Kanwaljit Singh 

 SAP ID: 500044606 

 Roll No: R110215062 

 

 

Under the guidance of  

Mr. Vishal Kaushik 

      Assistant Professor (SG), 

Department of Virtualization 

 
              

                                                                               Department of Virtualization 

           School of Computer Science, 

      UNIVERSITY OF PETROLEUM AND ENERGY STUDIES 

   Bidholi, Via Prem Nagar, Dehradun, Uttarakhand 

               2018-2019 
 

 

 



2  

 
 

CANDIDATE’S DECLARATION 

 
I/We hereby certify that the project work entitled “P2P – Cloud-Based Tracker 

Assisted Peer-to-Peer Content Exchange Allocated Network” in partial fulfilment of the 

requirements for the award of the Degree of BACHELOR OF TECHNOLOGY in 

COMPUTER SCIENCE AND ENGINEERING with specialization in Cloud Computing and 

Virtualization Technology) and submitted to the Department of Computer Science & 

Engineering at School of Computer Science Engineering, University of Petroleum & Energy 

Studies, Dehradun, is an authentic record of my/ our work carried out during a period from 

January, 2019 to May, 2019 under the supervision of Mr. Vishal Kaushik, Assistant 

Professor (SG), SoCS. 

 
The matter presented in this project has not been submitted by me/ us for the award of 

any other degree of this or any other University. 

 

Kanwaljit Singh (62) 
 

This is to certify that the above statement made by the candidate is correct to the best 

of my knowledge. 

 

Date: 10th May, 2019  
                  Mr. Vishal Kaushik 

(Project Guide) 
 

 

 

 
Prof. (Dr.) Deepshikha Bhargava  

Head 

Department of Virtualization 

School of Computer Science, 

University of Petroleum & Energy Studies 
Dehradun – 248 001 (Uttarakhand) 

 



3  

ACKNOWLEDGEMENT 
 

 

 

I wish to express my deep gratitude to my guide Mr. Vishal Kaushik, for all advice, 

encouragement and constant support he has given me throughout my project work. This work 

would not have been possible without his support and valuable suggestions. 

 

I sincerely thank to our respected Program Head of the Department, Prof.(Dr.) Deepshikha 

Bhargava, for his great support in doing my project in P2P at SoCS. 

 

I am also grateful to Dr. Manish Prateek, Professor and Dean, SoCS, UPES for giving me 

the necessary facilities to carry out my project work successfully. 

 

I would like to thank all our friends for their help and constructive criticism during my project 

work. Finally, I have no words to express my sincere gratitude to my parents who have shown 

me this world and for every support they have given me. 

 

 
 

Name Kanwaljit Singh 

Roll No. R-110215062 



4  

 

 

                                            ABSTRACT 

 

 
Today, it is seen that generally most part of the content gets served from one single server or 

cluster of servers which impacts the server performance and network impact of transferring 

large files. The services depend on the client-server architecture takes a lot of time without 

redundancy and charges a lot in infrastructure. The modern age in the field of technology has 

seen the rapid growth of internet and network dependent services such as evolved peer-to-peer-

based technology in which the content distribution is not centralized one whereas it provides 

more high-availability through wide-scale replication of content divided into pieces at large 

numbers of connected computers. The main purpose of this project is to expel the issues like 

high content downloading time, and the content can be transferred with low packet loss with 

low infrastructure cost by developing a P2P cloud-based tracker assisted distributed network 

that searches for other connected computers, i.e. called "peers." Most content web servers are 

punished as all the transferring is done from one centralized server, a rich content website needs 

more assets like CPU and transfer speed to have the capacity to adapt.  

 

With the utilization of P2P, the clients consequently reflect the content they require, facilitating 

the distributer's load. The project facilitates with DevOps approach in computerisation of the 

cloud servers and their system designs under which the cloud practices done on AWS 

environment with audit reviews utilising Jenkins builds and infrastructure setup utilising 

terraform as orchestration tool for deployment. Moreover, the peer application is accepting the 

peer inputs dynamically through suitable executable hosted on cloud according to the 

prerequisites required by the end-client system and catching them into remotely-enabled 

database and shows on web interface. 

 
Key words: p2p – peer-to-peer, cloud-based tracker, swarm, low packet-loss, high-

availability, low-bandwidth, distributed-approach, socket-technology, redundant network.



5  

TABLE OF CONTENTS    

 
S.No. Contents 

 
         Page No. 

  

1. Introduction 7   

    1.1. Types of Peer-To-Peer System                                                          7   

           1.1.1. Unstructured peer-to-peer network                               7-8   

            1.1.2. Centralized peer-to-peer network 8   

    1.2. What is a Socket? 8   

            1.2.1. Where is socket used?                                                                8   

2. Literature Review                                                                                                                                   8   

    2.1. Unstructured P2P Networks 8-9   

           2.2. Structured P2P Networks 9   

3. Problem Statement                                                                                                                                   10   

       4. Objectives Achieved 10   

       5. Limitations 11   

6. Design Methodology 11   

6.1. Tracker: Index Server                   11   

6.2. Peer: Client Server                11-12   

7. Implementation                13-15   

     7.1. Flow Chart                15-16   

     7.2. Use Case Diagram                    17   

     7.3. Result Visualization                18-19   

8. Output Screen 20-27   

9. System Requirements 28   

     9.1. Hardware 28   

     9.2. Software 28   

10. Conclusion and Future Scope 28   

11. Pert Chart  29   

12. References  30   

A. APPENDIX I PROJECT CODE 31-44   



6 

 

LIST OF FIGURES 

 

S.No.         FIGURES                          Page No.   

 

1. Flow Chart for socket connections b/w tracker server and peer client                 13 

2. Flow Chart for workflow of entire project with audit build generation                   14 

3. Use Case Diagram for P2P Based Exchange Network via Tracker                           15 

4. Tracker Server making connections with n number of peers, where n = 3              18    

5. P2P Tracker works as intermediate & clients transferring files b/w each)   19 

6. Tracker server search about file from connected peers for intial query                  19    

7. AWS Cloud Instance Console for Managing Indexing tracker Server                      20 

8. Connection to Cloud Based Indexing tracker Server on Port 3000                           20 

9. Connection with Peer (Client) on Accept Status by Tracker Server                          21 

10. Connection of Cloud Server with “n” number of Peer, here n = 2                             21 

11. List all files command indexed on Various Peers fetched via tracker                        22 

12. Created custom file on peer id 6002 for transfer purpose via tracker                         22 

13. Search file command invoked for checking particular peer which owns                    23 

14. Transfer invoked, sending file to the requested peer in network                                 23 

15. Register command invoked for registering the user details on remote-Db                  24 

16. Register Command Parameters for Saving End-Peer Information                              24 

17. Graphical Interface for Client (Peer) Interface serves via Apache2                            25 

18. Dynamic Data shown on GUI on session requests served via MySQL                       25 

19. PhpMyAdmin Showing MySQL Database Structure and Schema                              26 

20. SSH Key enabled for Jenkins User to SSH in Cloud Server for Audit                        26 

21. Build made on Jenkins GUI for AWS Cloud report for tracker Audit                         27 

22. Terraform – Automatic Cloud Virtual Instance Deployment via API                          27 

 

 

 

 

 

 



7 

 

1. Introduction: 

The major is Python-based shared (P2P) content exchange allocated network utilizing cloud-

based tracker for maintaining the record of files and connected peers in transferring the large 

data without investing in infrastructure. Peer-to-Peer (P2P) technology permits the sharing of 

PC assets, for example, documents which further get divided into pieces for a end-to-end 

exchange between end-user systems. P2P system implies content is not put away on a unified 

server. Rather, client-side software, (for example, the famous BitTorrent) functions as a server 

for shared records on a person's PC while accessing their file and other peer log record on 

public trackers [1]. P2P's usage gains from its reliability, low configuration and low bandwidth 

utilization that has changed the content framework of content sharers to make content 

accessible to one another around the world. P2P system has the following attributes: 

 End-to-End communication between connected systems.  

 Each hub, for example essentially associated PC is considered as an equivalent to all 

others.  

 There is no centralized purpose of control inside the system so low chances of failure. 

 Connected Computer and file records are available at public trackers. 

 

Peer-to-peer networking is the exchanging of PC assets and administrations by end-to-end 

communication between associated PCs. In a shared p2p framework, the content being 

disseminated is partitioned into sections called pieces. As each companion gets another bit of 

the document, it turns into a source (of that piece) for different friends, making the first source 

not to send that piece to each PC or client wishing a duplicate once more. 

 

1.1. Types of Peer-To-Peer System: 

 

1.1.1. Unstructured peer-to-peer network: It doesn't force any structure on the overlay 

systems. Companions in these systems interface in a specially appointed manner. In a perfect 

world, unstructured P2P frameworks would have definitely no incorporated framework [5], yet 

by and by there are a few sorts of unstructured frameworks with different level of centralization. 

There are two primary kinds of unstructured P2P systems: 

 

 Pure peer-to-peer systems: The whole system comprises exclusively of equipotent 

peers. There is just a single steering layer, as there are no favored hubs.  

 Hybrid peer-to-peer systems: These frameworks enable such foundation hubs to exist, 

regularly called super-nodes. An unadulterated P2P organize does not have the idea of 



8 

 

customers or servers but rather just equivalent companion hubs that at the same time 

work as both "customers" and "servers" to other hubs on the system. 

 

1.1.2. Centralized peer-to-peer network: In this, centralized server is utilized for 

maintaining file and peer logs of the whole network. In spite of the fact that this has similitudes 

with an organized design, the associations between peers are not controlled by an algorithm. 

 

1.2. What is a Socket? 

Sockets allow communication between two different processes on the same or different 

machines. To be more precise, it's a way to talk to other computers using standard Unix file 

descriptors. In Unix, every I/O action is done by writing or reading a file descriptor. A file 

descriptor is just an integer associated with an open file and it can be a network connection, a 

text file, a terminal, or something else. 

1.2.1. Where is socket used? 

Socket is used in a client-server application framework. A server is a process that performs 

some functions on request from a client. Most of the application-level protocols like FTP, 

SMTP, and POP3 make use of sockets to establish connection between the client and server 

and then for exchanging data. The socket was used to establish the connection with the server.  

2. Literature Review: 

 

P2P systems can extensively be delegated unstructured and organized P2P systems. In the 

previous, there is an irregular position of information on companions. Such systems develop 

organically as companions participate and there is no settled or chosen overlay which is clung 

to. In the last mentioned, there is a settled structure and overlay organize in which information 

put meant happens as indicated by focused hashing systems. Since P2P frameworks result in 

the conglomeration of assets from a few detached machines, this aggregation makes ready for 

an arrangement of an imposing archive of assets which also be used for specific purposes. For 

instance, the inert CPU intensity of each friend, in a medium-sized P2P organize, whenever 

used well, can result in the advancement of a framework with refined computational abilities. 

Since the companions in the system don't know about the entire topology of the system that 

they are a piece of, finding peers with the ideal substance effectively ends up troublesome. The 

strategy utilized customarily is that of message flooding or the guide from a brought together 

query server [3], [4]. 



9 

 

 

2.1. Unstructured P2P Networks  

Based on the instrument used to find the companion from which wanted information can be 

downloaded proficiently and the strategy used to download the equivalent then, we can 

partition unstructured P2P systems with a level engineering into the accompanying general 

classes: -  

 

 Napster: Napster is a P2P arrange which was worked so as to share music pieces among 

various friends in the system. There is an incorporated ordering server which tracks the 

substance transferred and the area of the companions which have downloaded the 

substance. 

 Gnutella: Gnutella [4] varies from Napster in the way that there is no brought together 

ordering a server in the previous. The companions communicate question messages to 

their neighboring friends to discover in the event that they have a duplicate of the ideal 

substance. So as to avoid flooding of the system with question messages, a perused 

communicate of these messages is finished. 

 Freenet[3[: In this P2P arrange there is no unified control and the companions find 

information dependent on substance steering. All the substance put away in the Freenet 

[14] is related to an exceptional key field, which is the hash of the substance.  

 

2.2. Structured P2P Networks  

In organized P2P systems, the topological properties of the overlay arrange and the tending to 

instrument help to fabricate the framework in which trade of substance can occur by means of 

various conventions. A few such systems have been proposed previously, for example, Chord 

[2], Pastry [5] and so on. The accentuation of the exploration is on making the query 

administrations productive. Every one of these conventions makes utilization of the Distributed 

Hash Tables (DHTs) for the without semantic, content-driven directing. Each friend is related 

with a peerID (as a rule the hash of the IP address) and every datum content is related with a 

KeyID (ordinarily the hash of the substance). 

 

 

 



10 

 

3. Problem Statement: 

 

In existing systems, i.e. centralized systems, most of the part of files content is served from 

single server or bunch of servers which impacts the server performance in peak hours when a 

lot of user requests from the server at a same time and makes the service unavailable. In this 

server also needs heavy processing power and more storage in case of multimedia media which 

increases the infrastructure cost too.  

Thus, we are developing a peer-to-peer (P2P) based system under which the content of the files 

is served from various connected computers, i.e. called peers by dividing the file into pieces, 

and each peer will receive a new and different piece of file, it will become a source for other 

peers in the network by relieving the original source not to send the file again. This provides 

the entire system a high availability with high file redundancy with wide-scale replication, and 

its resources cost will also be minimized when all the peers joined in the network and maintain 

it logs on the cloud-based tracker for peer coverage. 

 

4. Objectives Achieved: 

In this project, we’ve developed a P2P based content exchange distributed application with 

high-availability and redundancy utilizing an online cloud facility for indexing and log records 

for files which comprises of various objectives such as: - 

 

 A Cloud-based public tracker which maintains the peer coverage and log records for 

indexing the content in a p2p network. 

 A P2P distributed application which increases robustness by replicating data over 

multiple peers in-case of failures and provides resources including bandwidth, storage 

space, and computing power.  

 An indexed search engine which provides available file statistics and peer availability 

statistics in real-time connectivity of computers. 

 Auditing of Tracker Servers in One-Click Using Jenkins Build. 

 Graphical User Interface for registering the clients (peer) for backup identity 

management via LAMP Stack. 

 Client-side executable present in both .exe and binary that sign up peer info. without 

any platform dependencies. 

 

 

 



11 

 

5. Limitations: 

 Peer authentication system is not established at present. Any user in same environment 

can send request to indexing tracker server. 

 File transfer on public network makes tracker server unstable, currently works in 

localhost environment. 

 

6. Design Methodology: 

 

The model we took for our software project depends on our whole analysis, i.e. Evolutionary 

Prototype Software Development Process. 

 

6.1. Tracker: Index Server 

 

 Initialize: The server is located on the cloud’s public infrastructure which will invokes 

its functions when some peer gets connected. 

 Log index: It will maintain the log index of all the files available with their real-time 

statistics. 

 Peer Coverage: It will update the connected computers in the peer coverage while 

displaying them on screen. 

 Terminate: On termination, server will gets shut off. 

 

6.2. Peer: Client Server 

 

 Interface Module: Whenever client attempts to interface with the server it must give a 

legitimate I.P deliver to get to the server with port number. Based on server address, 

either the client is associated with the server or denied the entrance.  

 Online-peers: Once the peer and server get effectively associated the following thing 

that is required for the framework is that server must demonstrate the rundown of the 

peers that are dynamic that time. It is essential since a portion of the peers might be 

down to the end-client must not continue getting to the disconnected peers.  

 Find Module: Once the online peers are shown the interface must give the option to 

look through the content. Hunt record ought to have the usefulness that it must 

demonstrate the paths of all the framework that have that content as indicated by the 

client.  



12 

 

 Select Module: After posting the client should choose one peer that he/she finds the 

best and empowers downloading.  

 Download Module: While the downloading begins, advance bar continues 

demonstrating that the content has been downloaded effectively or not. 

 

 

Evolutionary Prototype Software Development Process: - 

 

 Analysis: Different ways of classical downloading will be studied. The p2p bandwidth 

coverage and algorithms will be studied out. 

 Design: We will design and use various downloading algorithms that considers 

various scenarios in which data can be transferred with high availability and 

redundancy. 

 Coding: Use of Python language in combination with sockets for data communication. 

 Testing: Speed Tests will be done on the data packets to check the packet loss. The 

developed prototype of P2P is verified and validated upon the software testing 

methods (Unit and integration testing). 

 Documentation: After completion of the full project, documentation will be done by 

the entire team.  

 Return to Step 1: if need to implement a future extension to this project, chat 

functionality between users can possibly be added for further advancements in sectors 

like health, military, etc. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 



13 

 

 

7. Implementation: 

Online Tracker Webhost: www.cloudtracker.tk 

Auto-Scaling: Auto-scaling is a way to automatically scale up or down the number on 

compute resources that are being allocated to your application based on its needs at any given 

time. 

We have configured autoscaling over the AWS and configure minimum 2 and Maximum 4 

instance. If our application needs more computing power, you now have the ability to launch 

additional compute resources on-demand and use them for as long as you want, and then 

terminate them when they are no longer needed. Adding and Removing instances action are 

based upon the below CloudWatch 

(Alarm 1) 

Condition: CPU Utilization >= 80 for 3 datapoints within 5 minutes                         

Description: This alarm continuously check the server to see If any server or endpoint 

consume greater than and equal 80% CPU utilization the resultant will launch or add one new 

instance. 

(Alarm 2) 

Condition: CPU Utilization < 40 for 3 datapoints within 5 minutes                           

Description: This alarm continuously check the server to see If any server or endpoint 

consume less than 40% CPU utilization the resultant will remove the one instance. 

There are two main components in the peer to peer architecture: 

1. Cloud Indexing Server (centralizd_cloud-server.py) 

2. Peer (peer with its sub-modules, client-side) 

Socket Connection Establish and Binding with IPV4 :  

 Define the IP address and port number of host-server. 

 Initialize the socket method structure. 

 Create a TCP server socket using socket() method – Bind the server socket to server 

IP and Port number. (this is the port to which we will connect)  

 Create a new connection from client using connect( ) method system call.  

http://www.cloudtracker.tk/


14 

 

 Send/ receive data with client using the client socket.  

 Close the connection on close and accept methods 

 

Cloud Indexing Server: 

 Manages peer registration. 

 Manages file index. 

 Manages Client requests for searching index. 

 Manages Peer list in the network that are connected to the server. 

Peer – Client Side: 

Peer has three sub components: 

1) Peer (peer.py) 

 Serves as client for users using the peer. 

 Gives option for Listing and Searching files from the Central Indexing Server. 

 Initiates connection to Central server and registers to the network. 

 Starts the peer server which will serve other peers (This is Daemonized). 

 Starts the file system handler, which updates Central Server about the files it 

has. 

 Initiates file transfer upon client request. 

2)  File System Event Handler (FilesystemEventHandler.py) 

 This is a daemon thread that is spawned by the peer thread. 

 This constantly monitors the allocated directory for file updates (Addition and 

Deletion). 

 Upon any such event, it automatically updates the changes to the Central 

Indexing server. 

3) Peer Server (server.py) 

 This is also a daemon server; this runs on the port which the Central Server 

allocates. 

 This will listen to any peer requests and initiates file transfer. 

 

 



15 

 

DevOps Approach: 

 Clones the code from develop branch from source’s github repository. 

 Making the master branches protective . 

 Make test and Rel branch for release and feature updates. 

 Test the codes and deploys it on test server using Jenkins build on successful 

development at developer server. 

 Then cuts the Rel branch from code so that test code remains preserve just like 

develop code. 

 On main release, merge the Rel branch into master to make it on live . 

7.1. Flow Chart: 

 

 

 
 

(Figure 7.1.1 – Flow Chart for socket connections b/w tracker server and peer client) 



16 

 

 

 

(Figure 7.1.2 – Flow Chart for workflow of entire project with audit build generation) 

 



17 

 

7.2. Use Case Diagram: 

 

 

 

 
 

 

 

 

       (Figure 7.2 – Use Case Diagram for P2P Based Exchange Network via Tracker) 

 

  



18 

 

7.3. Result Visualization: 

 

 

 

 

(Figure 7.3.1 – Tracker Server making connections with n number of peers, here n = 3) 

 

 

 



19 

 

 

(Figure 7.3.2 – P2P Tracker works as intermediate & clients transferring files b/w each) 

 

(Figure 7.3.3 – Tracker server search about file from connected peers for initial query) 

 

 



20 

 

8. Output Screen 

 

(Figure 8.1 – AWS Cloud Instance Console for Managing Indexing tracker Server) 

 

 

 

(Figure 8.2 – Connection to Cloud Based Indexing tracker Server on Port 3000) 

 



21 

 

 

(Figure 8.3 – Connection with Peer (Client) on Accept Status by Tracker Server) 

 

 

 

(Figure 8.4 – Connection of Cloud Server with “n” number of Peer, here n = 2) 

 

 

 



22 

 

 

(Figure 8.5 – List all files command indexed on Various Peers fetched via Tracker) 

 

 

 

(Figure 8.6 – Created custom file on peer id 6002 for transfer purpose via tracker) 

 



23 

 

 

(Figure 8.7 – Search file command invoked for checking particular peer which owns) 

 

 

 

(Figure 8.8 – Transfer invoked, sending file to the requested peer in network) 

 

 



24 

 

 

(Figure 8.9 – Register command invoked for registering the user details on remote-Db) 

 

 

 

(Figure 8.10 – Register Command Parameters for Saving End-Peer Information) 

 



25 

 

 

(Figure 8.11 – Graphical Interface for Client (Peer) Interface serves via Apache2) 

 

 

 

(Figure 8.12 – Dynamic Data shown on GUI on session requests served via MySQL) 

 



26 

 

 

(Figure 8.13 – PhpMyAdmin Showing MySQL Database Structure and Schema) 

 

 

 

(Figure 8.14 – SSH Key enabled for Jenkins User to SSH in Cloud Server for Audit) 

 



27 

 

 

 

(Figure 8.15 – Build made on Jenkins GUI for AWS Cloud report for tracker Audit) 

 

 

(Figure 8.16 – Terraform – Automatic Cloud Virtual Instance Deployment via API ) 

 

 



28 

 

 

9. System Requirements:  

9.1. Hardware: 

 Memory: Minimum 1 GB RAM (as per OS requirement) 

 Operating System: Win XP, Linux Distro (Minimum) 

 Storage: 512 MB (Minimum) 

 CPU: Pentium 4 processor (3.0 GHz, or better) 

 Internet: If Cloud Instance or Remote SQL Connectivity 

9.2. Software: 

 Software:  Any Python IDE or terminal executing executable files. 

 Build: Jenkins CI/CD Automation 

 Deploy: Terraform Orchestration Tool 

 Environment: Amazon Web Services (AWS) - Cloud 

 Web Stack: Apache 2.4, PHP 7.0, MySQL 5.2.0 

 

10. Conclusion and Future Scope:  

The project results uncovers that there is possibility of backup service on decentralised 

framework conceivable which will diminishes the expenses of suppliers and buyers yet at the 

same time it needs legitimate security like encryption of documents and appropriate 

consistence represents information insurance and in addition as a future planned resume 

broken transmissions, virus filtering and chat support with versatile empowered mobile p2p 

application. 

 

 

 

 



29 

 

 

11. Schedule: (PERT CHART) 

 

Start                              80 days – 11 Weeks (Kanwaljit Singh) 

Analysis & 

Design 

26/01/19 – 

09/02/19  

14 Days 

Kanwaljit Singh 

(Requirement 

Analysis and 

Designing the 

solution) 

 

   
  

Planning Prototype 

09/02/19 – 23/02/19 
  

  

14 Days 

Kanwaljit  

 (Planning a 

Prototype with 

defining all 

constraints for adapt 

future design) 

Coding 

23/02/19 – 

07/04/19 
 

  

42 Days 

Kanwaljit  

(Algorithm 

Implementation) 

Testing  

07/04/19 – 

14/04/19   

7 Days 

Kanwaljit 

(Debugging) 

  

  

Documentation 

14/04/19 – 

17/04/19 

3 Days 

Kanwaljit 

(Project 

Completion) 

 

 

 



30 

 

 

12. References: 

 

[1] Jovanovic, M., “Scalability Issues in Large Peer-to-Peer Networks - A Case Study of 

Gnutella," University of Cincinnati Technical Report 2001: http://www.ececs.uc.edu/ 

mjovanov/Research/paper.html 

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan, "Chord:  A scalable 

peer-to-peer lookup service for internet applications," Proceedings of SIGCOMM Conference 

on Applications, technologies, architectures, and protocols for computer communications, pp. 

149-160, Aug. 2001.  

[3] Freenet Protocol 1.0 Specification: http://freenetproject.org/index.php?page=protocol. 

[4] The Gnutella Protocol Specification v0.4: http://dss.clip2.com/GnutellaProtocol04.pdf. 

[5] H.T. Kung and W. Chun-Hsin, "Hierarchical Peer-to-Peer Network," Institute of 

Information Science Taiwan: Technical Report, vol. 2, no. 15, pp. 21-25, Apr. 2001. 

[6] Jianguo Ding, Ilangko Balasingham, Pascal Bouvry. "Management of Overlay Networks: 

A Survey", 2009 Third International Conference on Mobile Ubiquitous Computing, Systems, 

Services and Technologies, 2009. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

A. APPENDIX I PROJECT CODE: 

 

 Tracker Index Server Module (index_server.py) 

1. #!/usr/bin/python   
2. import socket   
3. import sys   
4. import threading   
5. import time   
6. import os   
7. import json   
8.    
9. HOSTNAME = '0.0.0.0'    # All Ipv4 listening   
10. PORT = 3000             # Any port, taking it as 3000   
11. BUFFER = 65536          # Max buffer   
12.                    
13. class central_server_class():   
14.     def __init__(self):   
15.         self.server = None   
16.         self.threads_ = []   
17.         self.file_index = {}   
18.         self.peer_offset_port = 6000   
19.         self.peer_list = []   
20.    
21.     # Registering peer to the central tracker       
22.    
23.     def register_peer(self):   
24.         if len(self.peer_list) != 0:   
25.             port_no = max(self.peer_list) + 1    
26.             self.peer_list.append(port_no)   
27.             return str(port_no)   
28.         else:   
29.             self.peer_list.append(self.peer_offset_port)   
30.             return str(self.peer_offset_port)       
31.    
32.    
33.     # Indexing the files, They are now in {file_name: [peer1,peer2..]} format.   
34.    
35.     def index(self,request):   
36.         for i,v in request.items():   
37.             if i == 'command':   
38.                 pass   
39.             else:   
40.                 if type(v) == list:   
41.                     for sub_f in v:   
42.                         sub_f = sub_f.lower()   
43.                         if sub_f in self.file_index.keys():   
44.                             self.file_index[sub_f].append(i)   
45.                         else:   
46.                             self.file_index[sub_f] = []   
47.                             self.file_index[sub_f].append(i)   
48.    
49.                 elif type(v) == tuple:   
50.                     files_added = v[0]   
51.                     files_deleted = v[1]   
52.                     if len(files_added) != 0:   
53.                         for subs in files_added:   
54.                             subs = subs.lower()   
55.                             if subs in self.file_index.keys():   
56.                                 self.file_index[subs].append(i)   
57.                             else:   
58.                                 self.file_index[subs] = []   
59.                                 self.file_index[subs].append(i)         
60.                     if len(files_deleted) != 0:   
61.                         for subs_ in files_deleted:   
62.                             subs_ = subs_.lower()   



32 

 

63.                             self.file_index[subs_].pop(self.file_index.index(i))   
            

64.    
65.     def search(self,request):   
66.         file_name = request['filename']   
67.         if file_name in self.file_index.keys():   
68.             return json.dumps({file_name:self.file_index[file_name]})   
69.         else:   
70.             return 'File not found in the index.'       
71.    
72.     def list_all_files(self):   
73.         return json.dumps(self.file_index)   
74.    
75.     def destroy_peer(self,peer):   
76.         for i,v in self.file_index.items():   
77.             if unicode(peer) in v:   
78.                 v.pop(v.index(unicode(peer)))   
79.    
80.     def process_request(self):   
81.         client_connection = None                   
82.         print '*'*80   
83.         print 'Server is now running on port %d' % PORT   
84.         print 'Press control+c to shutdown the central server.!!'   
85.         print '*'*80   
86.         infinite = 1   
87.    
88.         while infinite:   
89.             try:   
90.                 self.server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
91.                 self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)   
92.                 self.server.bind((HOSTNAME,PORT))   
93.                 self.server.listen(10)  # Listen upto 10 connections before droping

 them (queue).   
94.                 client_connection,client_addr = self.server.accept()   
95.                 if client_connection:   
96.                     print 'Connection Received from: %s on port: %d' % (client_addr

[0],client_addr[1])   
97.                     request = client_connection.recv(BUFFER)   
98.                     req = json.loads(request)   
99.                     command = req['command']   
100.    
101.                     if command == 'index':   
102.                         self.index(req)   
103.                     elif command == 'list_all_files':   
104.                         all_files = self.list_all_files()   
105.                         client_connection.sendall(all_files)   
106.                     elif command == 'search':   
107.                         search_results = self.search(req)   
108.                         client_connection.sendall(search_results)   
109.                     elif command == 'register':   
110.                         peer_id = self.register_peer()   
111.                         client_connection.sendall(peer_id)   
112.                     elif command == 'destroy':   
113.                         peer_id = req['peer']   
114.                         self.destroy_peer(peer_id)       
115.                     else:       
116.                         pass      
117.    
118.             except KeyboardInterrupt:   
119.                 infinite = 0   
120.                 print '*'*78   
121.                 print '\nKeyboard Interrupt Caught.!'   
122.                 print 'Shutting Down Peer Server..!!!'   
123.                 print '*'*80   
124.                 sys.exit(1)                                     
125.                            
126.             except Exception as e:   
127.                 print '*'*80   
128.                 print 'Processing Error..!!'   
129.                 print e.message   
130.                 print ''   



33 

 

131.                 #print '\nShutting down..!!'   
132.                 sys.exit(1)   
133.                 raise   
134.                 
135.                     
136.             finally:   
137.                 self.server.close()    
138.                 
139.     def close(self):   
140.         self.server.close()   
141.            
142.     def run_(self):   
143.         self.process_request()   
144.    
145. if __name__ == '__main__':   
146.     try:   
147.         cs = central_server_class()   
148.         cs.run_()   
149.    
150.     except KeyboardInterrupt:   
151.         print '*'*78   
152.         print '\nKeyboard Interrupt Caught.!'   
153.         print 'Shutting Down Peer Server..!!!'   
154.         print '*'*80   
155.         cs.close()   
156.         sys.exit(1)   

 Peer Module (peer.py) 

1. from server import server_class   
2. from filesystem import FilesystemEventHandler   
3. from filesystem import destroy_peer   
4. import socket   
5. import sys   
6. import json   
7. import time   
8. import datetime   
9. import os   
10. from User import User   
11. from Database import Database as db   
12. BUFFER = 65536   
13. OUTPUT_DIR = './Files/'   
14.    
15. def mainMenu():   
16.     logo = ''''' ******* WELCOME TO Peer2Peer Cloud Tracker - cloudtracker.tk *****

**  
17.                  
18.        ****** Cloud Assisted Peer2Peer Exchange System Registration  ******* '''   
19.    
20.     print(logo)   
21.     choice  = -1       
22.     current_user = -1   
23.    
24.     while choice != '4':   
25.         print '\n'   
26.         print '1.Register for Backup/File - Sign Up'   
27.         print '2.Verify your authentication'   
28.         print '3.Quit'    
29.    
30.         choice = raw_input('Enter your choice: ')   
31.    
32.         if choice == '1':   
33.             first_name = raw_input('First Name: ').upper()   
34.             last_name = raw_input('Last Name: ').upper()   
35.             user_id = raw_input('User id (Case-Sensitive): ')   
36.             while True:   
37.                 password = raw_input('Password (Min. 6-12 Digit): ')   
38.                 if 6 <= len(password) < 12:   
39.                     break   
40.                 print("")   



34 

 

41.                 print ('The password must be between 6 and 12 characters.\n')      
         

42.             address = raw_input('Enter Address: ').upper()   
43.             city = raw_input('City: ').upper()   
44.             state = raw_input('State: ').upper()   
45.             pincode = int(raw_input('Pincode: '))   
46.             phone = int(raw_input('Phone No.: '))   
47.             backup = raw_input('Backup File Name: ')   
48.             new_user = User(first_name, last_name, user_id, password, address, city

, state, pincode, phone, backup)   
49.                
50.             if new_user.save():   
51.                 print ''   
52.                 print 'Thanks for signing up!'   
53.                 current_user = user_id   
54.                 print ''   
55.                 print(current_user)   
56.                 print 'Login cloudtracker.tk in browser for details'   
57.             else:   
58.                 print 'Cannot create an account for you'   
59.                    
60.         elif choice == '2':   
61.             attempts = 1   
62.             while attempts <=3:   
63.                 print ''   
64.                 print 'Attempt %d: ' % (attempts)   
65.                 user_id = raw_input('User id (Case-Sensitive): ')   
66.                 password = raw_input('Password: ')   
67.    
68.                 if (User.authenticate(user_id,password)):   
69.                     current_user = user_id   
70.                     print ''   
71.                     print(current_user)   
72.                     print 'Successfully authenticated!'   
73.                     print 'Login cloudtracker.tk in browser for details'   
74.                     break               
75.                 else:   
76.                     print 'Invalid credentials!'   
77.                 attempts += 1   
78.             else:   
79.                 print 'Max sign in attempts reached'    
80.         elif choice == '3':   
81.             exit()   
82.         else:   
83.             print 'Invalid option!'    
84.    
85. class query_indexer():   
86.     def __init__(self):   
87.         self.ci_server_host = 'localhost'   
88.         self.ci_server_port = 3000   
89.         self.ci_server_addr = (self.ci_server_host,self.ci_server_port)   
90.         self.index_socket = None   
91.         self.credentials = None   
92.         self.LIST_FILES = json.dumps({'command':'list_all_files'})   
93.         self.GET_CREDENTIALS = json.dumps({'command':'register'})   
94.         self.SEARCH_FOR_FILE = {'command':'search'}   
95.    
96.     def send_command_to_cs(self,cmd):   
97.         try:   
98.             self.index_socket = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
99.             self.index_socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

   
100.             self.index_socket.connect(self.ci_server_addr)   
101.             self.index_socket.sendall(cmd)   
102.             response = self.index_socket.recv(BUFFER)   
103.             return response   
104.    
105.         except Exception as e:   
106.             print 'Cannot connect to the Centralized Cloud Server'   
107.             print 'Please make sure that the Server is running'   
108.             print '*'*80   



35 

 

109.             print e.message   
110.             sys.exit(1)   
111.             return 'error'   
112.    
113.         finally:       
114.             self.index_socket.close()            
115.    
116.     def get_credentials(self):    
117.         print '*'*80   
118.         print 'Registering peer port & address and fetching credentials from

 central cloud server\n'   
119.         try:   
120.             self.credentials = self.send_command_to_cs(self.GET_CREDENTIALS)

   
121.             if self.credentials == 'error':   
122.                 raise   
123.             self.credentials = int(self.credentials)      
124.             return self.credentials    
125.         except Exception as e:   
126.             print 'Retrive credentials failed'   
127.             print '*'*80   
128.    
129.     def list_all_files(self):   
130.         try:   
131.             all_files = self.send_command_to_cs(self.LIST_FILES)   
132.             all_files_ = json.loads(all_files)   
133.             print '*'*80   
134.             print '\nThe files index list from central cloud server:\n'   
135.    
136.             for i,v in all_files_.items():   
137.                 print '%s : %s' % (i,map(unicode.encode,v))   
138.             print '*'*80       
139.         except Exception as e:   
140.             print 'Retrive files list failed'   
141.             print e.message   
142.             print '*'*80   
143.    
144.     def search_for_file(self,file_name):   
145.         print '*'*80   
146.         print '\nSearching cloud central file index for the file and peer-

id'   
147.         try:   
148.             self.SEARCH_FOR_FILE['filename'] = file_name   
149.             search_command = json.dumps(self.SEARCH_FOR_FILE)   
150.             search_file = self.send_command_to_cs(search_command)   
151.             search_results = json.loads(search_file)   
152.             try:   
153.                 print '\nThe File requested are in the following peers:'   
154.                 for files_ in search_results[file_name]:   
155.                     print files_,   
156.                 print ''   
157.                 print '*'*80       
158.             except:   
159.                 print search_results           
160.                 print '*'*80   
161.         except Exception as e:   
162.             print 'Retrive search file list failed (FILE NOT FOUND)'   
163.             print e.message   
164.             print '*'*80   
165.    
166.     def obtain(self,peer_id,file_name):   
167.         print '*'*80   
168.         print 'Starting File Transfer..!'   
169.         print 'Connecting to peer on:', peer_id   
170.    
171.         st1 = datetime.datetime.now()   
172.         try:   
173.             server_addr = ('localhost',int(peer_id))   
174.             connection = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
175.             connection.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

   



36 

 

176.             connection.connect(server_addr)   
177.             connection.sendall(file_name)   
178.             response = connection.recv(BUFFER)   
179.             if response == 'Nope':   
180.                 print '\nOOPS, File Not Found'   
181.                 print '*'*80   
182.                 return   
183.         except Exception as e:   
184.             print 'File Transfer failed'   
185.             print e.message   
186.             print '*'*80   
187.             return   
188.         et1 = datetime.datetime.now()       
189.    
190.         try:   
191.             file_path = OUTPUT_DIR + file_name   
192.             fh = open(file_path,'wb')   
193.             fh.write(response)   
194.             fh.close()   
195.             et2 = datetime.datetime.now()   
196.             time_elapsed = (et2 - et1) + (et1 - st1)   
197.             ns = time_elapsed.microseconds * pow(10,-3)   
198.             file_size = os.path.getsize(file_path)   
199.             print time_elapsed.microseconds   
200.             bandwidth = ((file_size * pow(10,3)) / time_elapsed.microseconds

)   
201.             print '\nFile Transfer complete:'   
202.             print 'Size of file transmitted: %d bytes' % file_size   
203.             print 'Time Elapsed: %f nano seconds' % ns   
204.             print 'Calculated Bandwidth from file transfer %f MegaBytes/Sec'

 % bandwidth   
205.             print '*'*80   
206.    
207.         except Exception as e:   
208.             print 'File Transfer failed, check you connection parameters.'   
209.             print e.message   
210.             print '*'*80   
211.             return   
212.    
213.         finally:       
214.             connection.close()           
215.    
216.     def peer_stats(self):   
217.         print '*'*80   
218.         print 'Peer Host: localhost'   
219.         print 'Peer Port: %d' % self.credentials   
220.         print '*'*80   
221.    
222. if __name__ == '__main__':   
223.     os.system(‘mkdir Files’) 
224.     print '*'*80   
225.    
226.     try:   
227.         qi = query_indexer()       
228.     except Exception as e:   
229.         print 'Failed to import query package.!'   
230.         print '*'*80   
231.         sys.exit(1)    
232.    
233.     credentials = qi.get_credentials()   
234.    
235.     if credentials == 'error':   
236.         print 'Central Indexing cloud Server is not running.!!, Please start

 that first'   
237.         print '*'*80   
238.         sys.exit(1)   
239.    
240.     try:   
241.         server = server_class(credentials)    
242.         server.setDaemon(True)   
243.         server.start()   



37 

 

244.     except Exception as e:   
245.         print 'Peer Server Could not be started.'   
246.         print e.message   
247.         print '*'*80   
248.         sys.exit(1)   
249.    
250.     try:   
251.         fs_handler = FilesystemEventHandler(OUTPUT_DIR,credentials)   
252.         fs_handler.setDaemon(True)   
253.         fs_handler.start()   
254.     except Exception as e:   
255.         print 'File system monitor could not be started.'   
256.         print e.message   
257.         print '*'*80   
258.         sys.exit(1)     
259.    
260.     print 'Central Indexing Cloud Server is running on port  : 3000'   
261.     print 'This Peer Server is running on port         : %d' % credentials   
262.     print 'Both Central Server and Peer are running on : Cloud Server'       
263.    
264.     try:   
265.         possibilities = [1,2,3,4,5,6]   
266.         print '*'*80   
267.         while 1:   
268.             time.sleep(1)   
269.             print '\nEnter your choice.\n'   
270.               
271.             print '1 -  List all the files that are indexed in the Centraliz

ed Server.'   
272.             print '2 -  Search the Specific file (Returns peer-

id and file size where it locates)'   
273.             print '3 -  Get file from other peers (Requires file name and pe

er-id)'   
274.             print '4 -  Current Running peer statistics\n'   
275.             print '5 -  Press exit the connection.\n'   
276.             print '6 -  Register on Cloud Tracker for Backup/File Save Purpo

se'   
277.             command = raw_input()   
278.             if int(command) not in possibilities:   
279.                 print 'Invalid choice entered, please select again\n'   
280.                 continue   
281.             print '*'*80       
282.             print 'Choice selected: %d \n' % int(command)   
283.    
284.             if int(command) == 3:   
285.                 print 'Enter Peer Id:\n'   
286.                 peer_transfer_id = raw_input()   
287.                 print 'Enter File name:'   
288.                 file_name = raw_input()   
289.                 file_name = file_name.lower()   
290.                 qi.obtain(peer_transfer_id,file_name)   
291.    
292.             elif int(command) == 1:   
293.                 qi.list_all_files()   
294.    
295.             elif int(command) == 6:   
296.                  mainMenu();   
297.    
298.             elif int(command) == 2:   
299.                 print 'Enter File name:'   
300.                 file_name = raw_input()   
301.                 file_name = file_name.lower()   
302.                 qi.search_for_file(file_name)       
303.    
304.             elif int(command) == 4:   
305.                 qi.peer_stats()   
306.    
307.             elif int(command) == 5:   
308.                  exit()   
309.                        
310.    



38 

 

311.     except Exception as e:   
312.         print e.message   
313.     except KeyboardInterrupt:   
314.         destroy_peer(int(credentials))   
315.         print '*'*78   
316.         print '\nKeyboard Interrupt Caught.!'   
317.         print 'Shutting Down Peer Server..!!!'   
318.         print '*'*80   
319.         time.sleep(1)   
320.         sys.exit(1)   
321.    
322.     finally:   
323.         server.close()      

 Client Server (server.py) 

1. #!/usr/bin/python   
2. import socket   
3. import sys   
4. import threading   
5. import time   
6. import os   
7.    
8. HOSTNAME = 'localhost'   
9. BUFFER = 65536   
10.    
11. class handlers(threading.Thread):   
12.     def __init__(self,client):   
13.         super(handlers,self).__init__()   
14.         self.client = client   
15.    
16.     def request_handler(self):   
17.         try:   
18.             file_to_fetch = self.client.recv(BUFFER)   
19.             path_to_file = './Files/'+file_to_fetch   
20.             if os.path.isfile(path_to_file):   
21.                 fh = open(path_to_file,'rb')   
22.                 binary_data = fh.read()   
23.                 self.client.sendall(binary_data)   
24.                 return 'File Sent.!!'   
25.                 fh.close()   
26.             else:   
27.                 self.client.sendall('Nope')   
28.                 return 'File not found..!!'       
29.    
30.         except Exception as e:       
31.             self.client.close()   
32.             return  'File dosent exist.!!'   
33.    
34.     def response_handler(self,data):   
35.         try:   
36.             self.client.sendall(data)   
37.         except Exception as e:   
38.             self.client.send('Unable to send the data, Check the connection.!')   
39.             self.client.close()   
40.             return   
41.    
42.     def run(self):   
43.         print '*'*80   
44.         print 'Responding to client requests..!!'   
45.    
46.         try:   
47.             client_data = self.request_handler()   
48.    
49.         finally:   
50.             self.client.close()         
51.                
52. class server_class(threading.Thread):   
53.     def __init__(self,port):   
54.         super(server_class,self).__init__()   



39 

 

55.         self.PORT = port   
56.         self.server = None   
57.         self.threads_ = []   
58.             
59.     def process_data(self):   
60.         client_connection = None                   
61.    
62.         while True:   
63.             try:   
64.                 self.server = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
65.                 self.server.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)   
66.                 self.server.bind((HOSTNAME,self.PORT))   
67.                 self.server.listen(10)  # Listen upto 10 connections before droping

 them (queue).   
68.                 client_connection,client_addr = self.server.accept()   
69.                 if client_connection:   
70.                     print 'Connection Received from: %s on port: %d' % (client_addr

[0],client_addr[1])   
71.                     handle = handlers(client_connection)   
72.                     #multiple_cli.setDaemon(True)   
73.                     thread_ = handle.start()   
74.                     self.threads_.append(thread_)   
75.                            
76.             except Exception as e:   
77.                 print '*'*80   
78.                 print 'Processing Error..!!'   
79.                 print e.message   
80.                 print '\nShutting down..!!'   
81.                 sys.exit(1)   
82.                 raise   
83.                     
84.             finally:   
85.                 self.server.close()    
86.                
87.     def close(self):   
88.         self.server.close()   
89.            
90.     def run(self):   
91.         self.process_data()   
92.    
93.     # Establish Connection between this peer and the centralized indexing server   
94.     # Get the port number and other credentials from the centralized indexeing serv

er   
95.            

 File System Handler (filesystem.py) 

1. import sys   
2. import threading   
3. import os   
4. import time   
5. import socket   
6. import json   
7.    
8. class FilesystemEventHandler(threading.Thread):   
9.     def __init__(self,monitor_dir,peer_id):   
10.         try:   
11.             super(FilesystemEventHandler,self).__init__()   
12.             self.cs_indexing_server_addr = ('localhost',3000)   
13.             self.monitor_dir = monitor_dir   
14.             self.files = []   
15.             self.current_directory = './Files'   
16.             self.peer_id = peer_id   
17.             self.connection = None   
18.         except socket.error as e:   
19.             print 'Indexing cloud server is down.!!'   
20.             sys.exit(1)    
21.    
22.     def monitor(self):   
23.         while 1:   



40 

 

24.             if len(self.files) != 0:   
25.                 self.files.sort()   
26.                 cur_files = os.listdir(self.current_directory)   
27.                 cur_files.sort()   
28.                 if cur_files == self.files:   
29.                     pass   
30.                 else:   
31.                     # Make a note of files added and deleted.   
32.                     changes_added = list(set(cur_files) - set(self.files))   
33.                     changes_removed = list(set(self.files) - set(cur_files))   
34.                     changes = (changes_added,changes_removed)   
35.                     self.registry(changes,self.peer_id)   
36.             else:   
37.                 self.files = os.listdir(self.current_directory)   
38.                 self.registry(self.files,self.peer_id)   
39.    
40.             time.sleep(1)   
41.    
42.     def registry(self,changes,peer_id):   
43.         to_send_ = {peer_id:changes,'command':'index'}   
44.         to_send = json.dumps(to_send_)   
45.         try:   
46.             self.connection = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
47.             self.connection.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)   
48.             self.connection.connect(self.cs_indexing_server_addr)   
49.             self.connection.sendall(to_send)   
50.         except Exception as e:   
51.             print 'File transferred Successfully, Kindly Please check your Files/Ba

ckup Directory'   
52.             print '*'*80          
53.    
54.     def run(self):   
55.         self.monitor()   
56.    
57. class destroy_peer():   
58.     def __init__(self,peer_id):   
59.         self.cs_indexing_server_addr = ('localhost',3000)   
60.         self.destroy_ = socket.socket(socket.AF_INET,socket.SOCK_STREAM)   
61.         self.destroy_.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)   
62.         self.destroy_.connect(self.cs_indexing_server_addr)   
63.         self.destroy_cmd = {'command':'destroy','peer':peer_id}   
64.         self.kill_peer(self.destroy_cmd)   
65.    
66.     def kill_peer(self,destroy_cmd):       
67.         destroy_cmd = json.dumps(destroy_cmd)      
68.         self.destroy_.sendall(destroy_cmd)   

 Online Code - Portal (index.php) 

1. <?php   
2. session_start();       
3. if(isset($_POST['username'])) {    
4.    $_SESSION['username'] = $_POST['username'];   
5. }   
6. $message="";   
7. if(count($_POST)>0) {   
8.     $conn = mysqli_connect(null,"root","peer2peer","peer");   
9.     $result = mysqli_query($conn,"SELECT * FROM account_holder_details WHERE user_i

d='" . $_POST["username"] . "' and password = '". $_POST["password"]."'");   
10.     $count  = mysqli_num_rows($result);   
11.     if($count==0) {   
12.         $message = "Invalid Username or Password!";   
13.     } else {   
14.         header('Location: http://www.cloudtracker.tk/profile.php');    
15.     }   
16. }   
17. ?>   
18. <html>   
19. <head>   
20.     <title>P2P - Cloud-Based Tracker</title>   



41 

 

21.    
22.     <!-- Google Fonts -->   
23.     <link href='https://fonts.googleapis.com/css?family=Roboto+Slab:400,100,300,700

|Lato:400,100,300,700,900' rel='stylesheet' type='text/css'>   
24.    
25.        
26.        
27.     <link rel="stylesheet" href="style.css">   
28. </head>   
29. <body>   
30.     <div class="container">   
31.         <div class="top">   
32.             <h1 id="title" class="hidden"><span id="logo">P2P - Cloud-

Based Tracker</span></span></h1>   
33.         </div>   
34.         <div class="login-box animated fadeInUp">   
35.             <div class="box-header">   
36.                 <h2>Log In</h2>   
37.             </div><form name="quiz" method="post" action="" >   
38.             <label for="username">Username</label>   
39.             <br/>   
40.             <input type="text" name="username" placeholder="Enter user-id   
41. " id="username">   
42.             <br/>   
43.             <label for="password">Password</label>   
44.             <br/>   
45.             <input type="password" name="password" placeholder="Enter password" id=

"password">   
46.             <br/>   
47.             <button type="submit">Sign In</button>   
48.             <br/></br>   
49.             <div class="message"><?php if($message!="") { echo $message; } ?></br> 

  
50.                         <b><p>Client-Side Peer Executable</p></b>   
51.                         <input type="button" onclick="location.href='http://www.clo

udtracker.tk/peer_x64_executable.exe';" value="Peer Client via Windows" /></div>    
52.                         <input type="button" onclick="location.href='http://www.clo

udtracker.tk/peer';" value="Peer Client via linux/MacOS" /></div>          
53.                 
54.            
55.         </div>   
56.     </div>   
57. </body>   
58. </html>   

 Profile (profile.php) 

1. <html>   
2. <head>   
3.      
4.     <title>P2P - Cloud Tracker : Dynamic User Portal</title>   
5.      
6.   <style type="text/css">   
7.     body{   
8.         text-align:center;   
9.         background-image: url('peer.jpg');   
10.      
11.     }   
12.        
13.    
14.        
15.        
16.     </style>   
17.    
18.      
19. </head>   
20.    
21. <body>   
22. <center>   
23.     <h1>P2P - Cloud Tracker : Dynamic User Portal</h1>   



42 

 

24.      
25.    
26. <?php   
27. session_start();   
28. $conn = mysqli_connect(null,"root","peer2peer","peer");   
29. $result = mysqli_query($conn,"SELECT * FROM account_holder_details WHERE user_id='"

.$_SESSION['username']."'");    
30.    
31.    
32. echo '<table class="text" border=1px>';     
33. echo '<th>User ID</th><th>First Name</th><th>Last Name</th><th>Email Address</th><t

h>City</th><th>State</th><th>Pincode</th><th>Phone</th><th>Backup</th>';    
34.    
35.  while($data = mysqli_fetch_array($result))   
36. {   
37.    
38.     
39. echo'<tr>';   
40. echo '<td>'.$data['user_id'].'</td><td>'.$data['first_name'].'</td><td>'.$data['las

t_name'].'</td><td>'.$data['address'].'</td><td>'.$data['city'].'</td><td>'.$data['
state'].'</td><td>'.$data['pincode'].'</td><td>'.$data['phone'].'</td><td>'.$data['
backup'].'</td>';    

41. echo'</tr>';   
42.     
43. }   
44.    
45. echo '</table>. </br><br/><br/>';   
46.    
47.    
48.    
49.    
50.    
51. ?>    
52. </br>   
53. <b><p>P2P - Cloud Tracker : Server Status !</p></b></br>   
54. <input type="button" onclick="location.href='https://cloudtracker.tk/server.zip';" 

value="Cloud-Tracker Server : Status Outputs" />   
55.    
56.   </center>   
57.    
58.        
59.            
60.    
61.    
62.    
63. </body>   
64.    
65. </html>   

 Users Admin (users.php) 

1. <html>   
2. <head>   
3.      
4.     <title>Tracker - All Users Database</title>   
5.      
6.   <style type="text/css">   
7.     body{   
8.         text-align:center;   
9.         background-image: url('peer.jpg');   
10.      
11.     }   
12.        
13.    
14.        
15.        
16.     </style>   
17.    
18.      
19. </head>   



43 

 

20.    
21. <body>   
22. <center>   
23.     <h1>Tracker : Dynamic All Users Database Portal</h1>   
24.      
25.    
26. <?php   
27.    
28. $conn = mysqli_connect(null,"root","peer2peer","peer");   
29. $result = mysqli_query($conn,"SELECT * FROM account_holder_details");    
30.    
31.    
32. echo '<table class="text" border=1px>';     
33. echo '<th>User ID</th><th>First Name</th><th>Last Name</th><th>Address</th><th>City

</th><th>State</th><th>Pincode</th><th>Phone</th>';    
34.    
35.  while($data = mysqli_fetch_array($result))   
36. {   
37.    
38.     
39. echo'<tr>';   
40. echo '<td>'.$data['user_id'].'</td><td>'.$data['first_name'].'</td><td>'.$data['las

t_name'].'</td><td>'.$data['address'].'</td><td>'.$data['city'].'</td><td>'.$data['
state'].'</td><td>'.$data['pincode'].'</td><td>'.$data['phone'].'</td><td>'.$data['
backup'].'</td>';    

41. echo'</tr>';   
42.     
43. }   
44.    
45. echo '</table>. </br><br/><br/>';   
46.    
47.    
48.    
49.    
50.    
51.    
52. ?>    
53. </br>   
54. <b><p>P2P - Cloud Tracker : Server Status !</p></b></br>   
55. <input type="button" onclick="location.href='https://cloudtracker.tk/server.zip';" 

value="Cloud-Tracker Server : Status Outputs" />   
56.    
57.   </center>   
58.    
59.        
60.            
61.    
62.    
63.    
64. </body>   
65.    
66. </html>   

 Remote MySQL Dump (peer.sql) 

1. -- phpMyAdmin SQL Dump   
2. -- version 4.8.5   
3. -- https://www.phpmyadmin.net/   
4. --   
5. -- Host: localhost   
6. -- Generation Time: May 02, 2019 at 10:20 PM   
7. -- Server version: 5.6.43   
8. -- PHP Version: 7.0.33   
9.    
10. SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";   
11. SET AUTOCOMMIT = 0;   
12. START TRANSACTION;   
13. SET time_zone = "+00:00";   
14.    
15.    



44 

 

16. /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;   
17. /*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;   
18. /*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;   
19. /*!40101 SET NAMES utf8mb4 */;   
20.    
21. --   
22. -- Database: `peer`   
23. --   
24.    
25. -- --------------------------------------------------------   
26.    
27. --   
28. -- Table structure for table `account_holder_details`   
29. --   
30.    
31. CREATE TABLE `account_holder_details` (   
32.   `first_name` varchar(10) NOT NULL,   
33.   `last_name` varchar(10) NOT NULL,   
34.   `user_id` varchar(10) CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,   
35.   `password` varchar(15) CHARACTER SET latin1 COLLATE latin1_general_cs NOT NULL,   
36.   `address` varchar(50) NOT NULL,   
37.   `city` varchar(20) NOT NULL,   
38.   `state` varchar(20) NOT NULL,   
39.   `pincode` int(10) NOT NULL,   
40.   `phone` varchar(15) NOT NULL,   
41.   `backup` varchar(255) NOT NULL   
42. ) ENGINE=InnoDB DEFAULT CHARSET=latin1;   
43.    
44. --   
45. -- Dumping data for table `account_holder_details`   
46. --   
47.    
48. INSERT INTO `account_holder_details` (`first_name`, `last_name`, `user_id`, `passwo

rd`, `address`, `city`, `state`, `pincode`, `phone`, `backup`) VALUES   
49. ('KANWALJIT', 'SINGH', 'kanwal', '123456', 'AEVEKAMAL@GMAIL.COM', 'DEHRADUN', 'UK',

 248001, '9213456789', 'backup-website.zip'),   
50. ('MAYANK', 'BODWANI', 'mayank', '123456', 'MAYAANK.001@GMAIL.COM', 'DOON', 'UK', 24

8001, '9876543215', 'mayank-documents'),   
51. ('VIKAS', 'GOSWAMI', 'vikas', '123456', 'VIKAS.001@GMAIL.COM', 'LUCKNOW', 'UK', 160

018, '9876543261', 'vikas.txt');   
52.    
53. --   
54. -- Indexes for dumped tables   
55. --   
56.    
57. --   
58. -- Indexes for table `account_holder_details`   
59. --   
60. ALTER TABLE `account_holder_details`   
61.   ADD PRIMARY KEY (`user_id`),   
62.   ADD UNIQUE KEY `user_id` (`user_id`);   
63. COMMIT;   
64.    
65. /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;   
66. /*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;   
67. /*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;   

 

 

 

 

 

 


	“P2P – Cloud-Based Tracker Assisted Peer-to-Peer Content Exchange Allocated Network”
	Kanwaljit Singh (62)
	Mr. Vishal Kaushik

	ACKNOWLEDGEMENT
	ABSTRACT
	7.1. Flow Chart:
	7.2. Use Case Diagram:

